

Data
Prefetching
Kalpesh Gala and Jim Robertson

Outline
Motivation/Overview

Overview of Prefetch Instructions
Instruction Format and Arguments

Memory Access Example
Stopping Prefetching
Other Considerations

Motivation
• By prefetching the data BEFORE it is

needed:
• The data will be in the local (L1) cache

• The page table entry will be in the TLB
when the memory access

• load/store instructions accessing
memory execute quickly (no bus
access)

Overview
• G4 supports software-directed prefetch
• Uses idle bus cycles to load data into cache

before it is needed
• When the load/store instructions are

actually executed, data is in cache
• “Data Stream Touch” instructions control

software-directed prefetch

Prefetch Instructions
• Four instructions initiate software

prefetching
• Dst—Data Stream Touch

• Dstt—Data Stream Touch Transient
(used for last access)

• Dstst—Data Stream Touch-for-Store
(should not be used)

• Dststt—Data Stream Touch-for-Store
Transient (should not be used)

Prefetch Instructions (Cont.)
• Transient instructions indicate the data

does not have a long lifetime
• Transient data will not be castout to the

L2 for future use
• Modified data is written directly to the

memory, unmodified data is discarded

• Touch-for-Store instructions mark data
as exclusive

• Inefficient because they use different
internal resources

• Usage: dstX rA, rB, STRM

dstX is one of dst, dstt, dstst , or dststt

rA is the Address of the first block to prefetch

rB encodes the Block Size, Block Count and Stride

STRM is the stream to use; 0 - 3

000 Block Size Block Count Signed Stride
 0 2 3 7 8 15 16 31

dstX Instruction Format

dstX Arguments
• Stream ID—which stream engine to use

• There are four stream engines, 0-3

• Address—Initial address of the sequence
• Block Size—The number of quad words

(16 bytes) in each block
• Block Size is between 1 and 32

• Should be at least 2 to fill a single 32-
byte G4 cache line

dstX Arguments (Cont.)
• Count—Number of blocks in the sequence

• Count is between 1 and 256

• Stride—Number of bytes between blocks
• Valid stride values:

• -32768 < stride < 0 or 0 < stride
< 32768

• To avoid redundant loads, stride must
be used correctly

Stride = 128
(16 bytes/vector * 8 vectors)

Address = 0x1000
(First vector is at 0 x1000)

0x10000x10000x1000

0x10800x10800x1080

0x11000x11000x1100

0x11800x1180

Block Size = 2 vectors
(2 vectors = 32 bytes)

Count = 4
(4 total blocks
loaded)

represents 16 by tes
of memory

Each

rA = 0x00001000
rB = ((2<<24)

| (4<<16) | 128)

dst rA,rB,0

dst Memory Access

dst Termination
• Two different instructions to allow the user

to stop dst streams
• Dss (Data Stream Stop)—stops a

single stream

• Dssall (Data Stream Stop All)—stops ALL
active streams

dst Termination (Cont.)
• Prefetching may also terminate for any of

the following reasons:
• Successfully reached end of stream

• Another dst instruction to the same
stream is executed

• Currnet line-fetch causes a table walk
which results in a page table miss

• Current line-fetch is translated as
cache inhibited

dst Termination (Cont.)
• There is no way to identify if a stream has

stopped fetching
• Should re-issue dst instructions

periodically “just in case”

Other Considerations
• Prefetching is context aware

• Prefetching is paused if the processor
switches from user to supervisor mode

• Prefetching resumes when switching
back to user mode

• This prevents prefetching from
happening during exceptions

Other Considerations
(Cont.)

• No arbitrary address boundaries which
stop the progress of a stream

• dstX instructions handle address alignment
issues automatically

• All four prefetch engines can be active at
the same time

Conclusion
• Software prefetching can be a useful tool

for increasing performance
• dstX instructions are directly supported by

the AltiVec programming model
• Use transient versions of dstX for the last

access of the data
• Avoid using the touch-for-store variants

of dstX

Sim_G4 in
Depth & Details
Kalpesh Gala and Jim Robertson

Presentation Summary
• Introduction
• Methodology & Tool Flow
• Configuring Sim_G4
• 64-bit Multiply Example
• Conclusion

Introduction
• Sim_G4 is a trace driven, cycle accurate

timing simulator
• Sim_G4 was developed by Motorola’s

PowerPC G4 Design Team for architectural
decisions

• Limitations
• No notion of data dependencies

• Most applications are 95-100% accurate

Methodology & Tool Flow
Code the desired algorithm/application (you)

Compile (MW, MPW, MrC, mcc)

Execute application / generate trace (pitsTT6)

Simulate operation on G4 Processor
(Sim_G4)

Analyze simulation results (you)

Optimize (you)

High Performance Code!!! = $$$

Sim_G4 Configuration
• Command Line Options
• Simulation Parameters
• Current Sim_G4 Defaults

• Processor is a 300 MHz G4

• System bus running at 75 MHz

• System is a PowerMac G3

A variety of control
parameters can be set
through the Command
Line Options popup
window

Output Configuration

A variety of system
configuration va riables
can be set through the
Simulation Param eters
popup window

System Configuration

• Assumption: a TT6 trace file has been
generated as input to Sim_G4

• After invoking the application and selecting
the desired configuration, an input TT6 file
must be designated

Processing the Trace

After configuring and
supplying the desired
trace Sim_G4 pro vides
profiling information

Sim_G4 the Last Step…

Demo

Conclusion
• Sim_G4 models the G4 Architecture NOT

just the AltiVec engine
• Sim_G4 can be useful in fine-tuning pieces

of code
• Analysis of memory intensive applications

may not reflect system
• Sim_G4 not always 100% accurate

Call to Action
• Download the SDK:

 developer.apple.com/hardware/altivec
• www.mot.com/AltiVec
• Identify data parallelism in your programs
• Vectorize computation intensive code
• Use Sim G4 to tune performance
• Sign up for the next AltiVec kitchen

Room L
Fri.

Room L
Fri.

Hall J2
Fri., 10:15am

Hall J2
Fri., 10:15am

AltiVec Workshops
Hands-on introduction to AltiVec
(pre-registration only)

AltiVec Feedback Session
Open Q&A session

Other AltiVec Sessions

Q&A

Think different.™


